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C O N T A C T  P R O B L E M  F O R  A R I N G  P L A T E  

ON A N  E L A S T I C  H A L F - S P A C E .  V A R I A T I O N A L  A P P R O A C H  

S. V .  B o s a k o v  UDC 539.3 

A contact problem of an axisymmetrically loaded flexible ring plate lying frictionlessly on an 
elastic half-space is considered. The plate subsidences are represented as a power series with 
unknown coefficients, which are determined by the Rayleigh-Ritz method using the minimum 
condition for the total strain energy of the plate and the elastic foundation. The method of 
orthogonal polynomials is used implicitly. 

The problem of axisymmetrical bending of a transversely loaded flexible ring plate which lies 
frictionlessly on an elastic half-space with distributional properties has not been adequately studied. This 
problem for a ring punch was studied in detail by Aleksandrov in [1-3], where asymptotic solutions were 
obtained for narrow and wide ring punches. In the present paper, to solve this problem a variational approach 
is used as is done in [4] to solve a contact problem for a circular plate on an elastic half-space. However, in 
contrast to [4], the static boundary conditions at the edges of a simply lying plate are not satisfied. They are 
known [5] to be satisfied automatically by taking a sufficiently large number of terms of a series approximating 
the subsidence function of a ring plate. The above approach was used in [6] to obtain a solution of the contact 
problem of a beam on an elastic half-plane. 

We consider a ring plate lying frictionlessly on an elastic homogeneous isotropic half-space having 
constant modulus of elasticity E and Poisson ratio v and subjected to a transverse axisymmerical load q(r) 
(Fig. 1). We shall seek the plate subsidences and the reactive stress distribution in the contact zone between the 
plate and the elastic half-space caused by the applied load. In calculations, we use the following assumptions: 

(a) tangential stresses do not occur between the plate and the foundation during bending; 
(b) the plate thickness is small and the Kirchhoff-Love hypotheses are valid; 
(c) compressive and tensile stresses can occur between the plate and the foundation. 
We express the deflection function of the ring plate in the form of the series 

oo I ,m 

w(r) = E A m - ~ ,  (1) 
rn=O 

where b is the external radius of the plate and Am are the desired coefficients. The strain energy of the ring 
plate in bending can be written in the form [7] 
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where vp is the Poisson ratio of the plate material and a is the internal radius of the ring plate. 
The strain compatibility condition implies that the plate deflections w(r) are equal to the subsidences 

v(r) of the elastic half-space 

i f  pdpdqa w(r)  = = 2 1 -  v2 b 
~E P(P) (r2 q_ p2 _ 2rp cos ~9)1/2' 

0 a 

where p(r) is the distribution of the contact stresses occurring between the plate and the elastic foundation 
because of plate bending. 

After integrating over the variable ~, we have 

1 - v  2 7 (2x/~ ~ pdp 
13(r) 4 ~E --P(P)Kkr + p/ p+ r' 

where K(z) is the complete elliptic integral [8]. 
To determine a contact-stress distribution that causes deflections of the ring plate in the form (1), we 

solve the auxiliary integral equation 

Y~ A m - ~ = 4  g~ fpp(p)K dp . (2) 
m=0 a P + r 

In (2), we introduce new variables [1] 

p = a e x p ( ~ - ) ,  r = a e x p ( ~ - - ~ ) ,  ~=ln(b--~a ) 

and reduce the integral equation (2) to the form 

j f  . [ (  t - - .17)--1] /  t--gE 7/'E~ ~o Frn 
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cp(x) = (p/a)3/2p(p). 

Taking account of the logarithmic singularity in the kernel of the integral equation (3), similarly to [3] 
we assume that 

( [( c o s h - - ~  h" cosh 2s ] ] - I n  + E E c~.(~)r(x)r(,), 
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300 = 1/lr~, 130m = 3mo = flon = 3.0 = 2/7r ~, tim,* = ram = 4/zr 2, 

where Tin(z) is a Chebyshev polynomial of the first kind [8]. 
The representation (4) enables us to seek a solution of the integral equation (3) in the form of a series 

in Chebyshev polynomials of the first kind 

qo(x) = (1 - x2) -I/~ ~ BkTk(x),  (5) 
k=O 

where Bk are the desired coefficients. 
Then we use the spectral [2] 

1 / { -rr ln2, m = O ,  Ix < l[, 
-1 In It - zlT, ,(x)(1 - z2) -112 dx = - H m r , , ( t ) ,  m = 1 ,2 , . . .  

and orthogonality relations for the chosen Chebyshev polynomials [8]: 

1 x2) - l /2dz  { O, men, 
[ --  T,, ,(x)T,(x)(1 - = rr, m = n = O, 

-1  H 2 ,  m n. 

As a result, we have an equation that relates the coefficients of expansions (1) and (5). We multiply 
both sides of this equation by Ti(t)(1 - t2)-a/2 dr, integrate over the interval [-1, +1], and obtain the infinite 
system 
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where Ik(z) is the modified 
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Bessel function [8] 
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and the nondiagonal 
significantly less than the diagonal elements. 

We write the solution of system (6) in matrix form: 

[B] = M-I[A] ,  

or] - 1 
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coefficients of the matrix [a] are 

(r) 

The representation (7) enables us to express the coefficients B, of series (5) in terms of the coefficients 
Am of series (1). This, in turn, makes it possible to express the energy of the elastic foundation as a quadratic 

! 6 ,q 



function of the coefficients Am. Indeed, we find the work of the reactive stresses p(r) in displacements w(r): 

b a.2a2e2/A co co a m 
T : r / P ( r ' w ( r ) r d r -  A Y~" ~-'era/a--bra AraB, lk (m~2)~. 

a m=0 k=0 

The work of the external forces II done in the displacement w(r) during bending of the plate can be 
presented in the form 

b b 

II = --2rr q(r)w(r)r dr = -2rr Arab-"* q(r)r ra+' dr. 
a ra-"~-0 a 

The resulting expression for the total potential energy of the system comprising the plate and the 
foundation can be written as follows: 
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We differentiate (8) with respect to Ai (i = 0, 1, 2, ...) and arrive at the infinite set of linear algebraic 
equations for the desired Ai: 
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Here/3 = Eb3/(TrD(1 - v2)) is the flexibility factor given by Gorbunov-Posadov [9]. 
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TABLE 1 

Ao l 

0.9 11.24664 1 
0.3 11.09959 

0.9 0.00962 
0.3 0.02258 

Expansion Coefficients (1) for u = 1/6 

At A2 ] A3 ] A4 A s [ A s  

= 0.01 

_ooo,1, _oo0oo, i_ooooo, I _ - l  
-0.09326 -0.00458 -0.00234 -0.00109 -0.00037 0.00007 

I o ooo 81 
= 2 0 . 0  

-0.00414 -0.00003 -0.00001 - -  I - -  
-0.01924 0.00136 0.00058 0.00001 I -0.00004 
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Fig. 2 
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Once the coefficients Am (m = 0, 1, 2, . . . )  are determined from Eq. (9), we can find Bk, where 
k = 0, 1, 2, 3 , . . . ,  using formula (7); this makes it possible to determine the contact-stress distribution under 
the ring plate by means of formula (5): 

a l . 5  co 

pC,) - At,.5 [ lnCr /a ) In (h i , ' ) ] - '~  2 B, T,n(A lnC, ' la)  - 1). 
r 

Using known formulas [7], one can calculate the forces in the plate. The approach considered was 
used to calculate ring plates with various ratios a/b and flexibility factors ~. The coefficients Cm,, (4) were 
determined numerically using quadrature formula [10, formula (25.4.38)]. In calculations, the first 10 terms 
were retained in series (1) and (5) and the expressions for ~,~,, (9). The best convergence of solution was 
observed for narrow plates (a/b ~ 1), where only three terms of series (1) and (5) are sufficient for practical 
calculations. This conclusion is supported by the data in Table 1, where the coefficients of series (1) are given 
for two values of a/b for a uniformly loaded plate (~/= 0.01 and 20.0). Figure 2 shows the diagrams of the 
reactive stresses for these flexibility factors (curves 1 and 1' refer to ~/= 0.01, and curves 2 and 2' to ~ = 20) 
and the values of a/b. It can be seen that the stress distribution for a narrow plate (Fig. 2b) depends weakly 
on the flexibility factor ~. For wide plates (Fig. 2a), it depends significantly on ~/and it is, therefore, necessary 
to preserve five or six terms in series (1) and (5). 

One can also see in Fig. 2 that, for a ring plate with small a/b, tensile contact stresses at the external 
edge can occur for large values of 13. To avoid this, one should decrease the value of fl by increasing the flexural 
rigidity of the plate or by decreasing the modulus of elasticity of the foundation. For example, for a ring plate 
having a/b = 0.3 with ~ = 4.526 and uniformly distributed load, the tensile contact stresses occur in the 
proximity of its external edge. 

For rigid ring plates, the author's results coincide with the asymptotic solutions obtained by 
Aleksandrov [1]. 
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